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Links to: theoretical work, multi-model inference, model averaging!



Dealing with correlation

Random Effects, Mixed Models & 

Generalized Estimating Equations

Mixed Models



Until now, all the independent variables were fixed effects.  Today 

we introduce another type of variables, random effects.

The term random effect is widely used in the statistical literature, 

and unfortunately, it can mean a lot of different things.

Here we begin by introducing it as a variable that we are not 

interested in its effect per se, but one which we know might 

influence the response variable.

The use of random effects will allow us to cope with a different 

number of circumstances. As an example, when we collect the 

response variables within sampling units, the sampling unit will be 

typically a random effect.



Examples:

1. We are estimating the effect of different diets on baby dogs. Each 

litter is assigned to a diet. We collect the weight at birth and the 

weight after 1 month of the dogs. Litter is a random effect –

we know different litters might have different weight gains 

irrespective of diet, due to e.g. genetic effects, but what we want 

is to evaluate the impact of the diet.

2. One is looking at estimating the effect of drinking on the 

performance on a given test. To do so each person is given x 

(x=1,2,3,4) glasses of beer in each of 4 days, selected at random 

in a given 15 day period. Person is a random effect – we want 

to account the variability of each person, but we do not care 

that some people react better or worse to drinking, our main 

interest is on the overall effect of drinking on the task.



By far the most common and easily understood type of random 
effect are the blocks in experiments or observational studies 
that are replicated across sites or times. 

Random effects also encompass variation among individuals 
(when multiple responses are measured per individual, such as 
survival of multiple offspring or sex ratios of multiple broods), 
genotypes, species and regions or time periods.



When we have a model that includes both 

fixed effects and random effects

we call it a 

mixed model

A note: fitting these is no longer a trivial matter (as fitting GLMs and GAMs perhaps was), and we often find

ourselves facing strange error messages with convergence problems, or variances estimated as 0, etc. There are

different ways to implement these models and which might be the best is beyond what we can deal with in

“Modelação Ecológica”. Some of these topics are still current research topics, so we have reached the point where

no one really has definitive answers on what is the best way to proceed. Conceptually we know what to do, in

practice, it might be hard to do it! But at least, you are now aware these options exist!

Just as for (simpler) linear models, mixed models can be extended in two ways:

1. Generalized linear mixed models – GLMMs (implemented e.g. via lme4, glmm)

2. Generalized additive mixed models – GAMMs (implemented e.g. via mgcv, gamm)

Mixed models can be implemented in R via: nlme lme

package function

lme4 lmer
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RIKZ.txt – species 

richness, as a function of 

station height and a 

measure of exposure 

(for more details on this 

data see chapter 5 in 

Zuur et al. 2009)
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NAP = height of sampling station 

compared to mean tidal level 

Sampling unit: a site within a beach 



How do we explain the variability in species richness 

(R) as a function of NAP and Exposure

Rij = a + b × NAPij + c × Exposurei + eij

i=1,2,…,9 beaches

j=1,2,…,5 replicates







Richnessr=a+b*NAPr+er , r=1,2,…,45

Ignoring the hierarchical nature of the data – assuming independent observations 



Let’s consider a two-stage approach:

1. We consider the relation between R and NAP, for each beach

2. We model the estimated coefficients per beach as a function 

of exposure



For each beach i: Richnessij=ai+bi*NAPij+eij

Stage 1 - Model the relationship within each beach 



bi=d+c*Exposurei+ei

Stage I1 - Model the parameters as a function of exposure

(here consider the slope only)



The mixed model way – a random intercept model

Richnessij=β0+ β1i ×Beachi+ β2 × NAPij+eij Richnessij=β0+ β1i + β2 × NAPij+eij

A random effect, a value that varies by beach, with mean 0 and some variance
A fixed effect, one parameter per beach



The mixed model way – a random intercept model

lme by nlme



The mixed model way – a random intercept model

lmer by lme4

No p-values in lmer…!

A highly controversial topic…:

https://stats.stackexchange.

com/questions/118416/gett

ing-p-value-with-mixed-

effect-with-lme4-package

https://stats.stackexchange.com/questions/118416/getting-p-value-with-mixed-effect-with-lme4-package


Now we have two levels of predictions. Those at the global level, and those at the beach level

Richnessij=β0+ β1i + β2 × NAPij+eij

population or global level
beach level





The mixed model way 

– a random intercept and random slope model

Richnessij=β0+ β1i ×Beachi+ β2 × NAPij + β3i ×Beachi × NAPij + eij

Richnessij=β0+ β1i + β2i × NAPij+eij

Two random effects, one for the slope and one for the intercept, both varying by beach, 

with mean 0 and some variance (2 variances, one for slopes and one for intercepts)

A fixed effect, one parameter per beach

A fixed interaction, one parameter per beach



lme by nlme



lmer by lme4

Note lower variability remains unexplained 

compared to random-intercept-only model







A random effects model (a different random mean per beach, NAP not relevant)



Model selection in a mixed model context (a possible top-down approach)

1. Start from a full model with all relevant fixed effects

2. Fit different random components

3. Select the most parsimonious one (e.g. via AIC)

4. Conditional on that random effect structure, select the relevant (fixed) effects

Your task: find the best model for the RIKZ data set



A talk delivered at 

See slides “A17 MarquesSPE2019.pptx”



https://biologyforfun.wordpress.com/2014/03/12/generalized-linear-mixed-models-in-ecology-and-in-r/

“… Despite the availability of accurate techniques for estimating GLMM parameters in simple cases, complex 
GLMMs are challenging to fit and statistical inference such as hypothesis testing remains difficult…”

“…GLMMs are surprisingly challenging to use even for statisticians. Although several software packages
can handle GLMMs (Table 1), few ecologists and evolutionary biologists are aware of the range of options or 
of the possible pitfalls.…”

Just as in GLMs, non-normal responses and link 

functions get added to models with random effects

https://biologyforfun.wordpress.com/2014/03/12/generalized-linear-mixed-models-in-ecology-and-in-r/
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